

BEAMER

PART 5: Standard Dose PEC -Parameters

BEAMER Training Part 5

Outline

• PSF definition

- Process parameters
- Advanced Parameters
- Summary
- Q & A

• Proximity Effect

- Principle
- Monte Carlo Simulation in TRACER
- Proximity Effect Correction by Dose modulation
 - Edge Equalization algorithm
- Inside the PEC window
 - Why divide into Short, Mid, Long range
 - Effective Blur
 - Short range correction

PSF definition

- PSF Stack
- PSF with Gaussian
- Process parameters
- Advanced Parameters
- Summary
- Q & A

Introduction

Live demo

PEC dialog

- Show archive
- Input of gaussian
- Mid range

PSF Definition

- From Monte Carlo Simulation
 - BEAMER Archive comes with PSF for major stack and acceleration voltage
 - TRACER for additional PSF
 - Numerical PSF from other MC simulator or experimental in txt format
- PEC algorithm is using table defined PSF
 - Not converted to Gaussians
 - PSF is split to Short- and Long-Range to be used in correction algorithm

PSF With Gaussian

"Traditional" Gaussian Definition

- Allows using literature data
- Easier "fit" PSF to experiments with only few parameter
- No advantage with regards to PEC time
- TRACER can fit MC simulated PSF to (multi) Gaussian

Proximity Effect Correction	- D X	Proximity Effect Correction	- D X
General Accuracy Advanced Label/Comment Quick Access Correction Layer Selection Layer(s) * PSF Representation	 ○ Show Energy Density ● Show Cumulative Radial Energy Behaviour X-Axis: ● Logarithmic ○ Quadratic ○ Linear Behaviour Y-Axis: ○ Logarithmic ● Linear 	General Accuracy Advanced Label/Comment Quick Access Correction Layer Selection Layer(s) *	○ Show Energy Density ④ Show Cumulative Radial Energy Behaviour X-Axis: ⑥ Logarithmic ○ Quadratic ○ Linear Behaviour Y-Axis: ○ Logarithmic ⑧ Linear
Archive Gaussian Approximation Numerical PSF PSF Parameter Alpha [um] 0.005000 Eta 0.600000 Eta 0.600000 Gamma1 [um] 0.300000 Nue1 0.10000 Gamma2 [um] 2.000000 Nue2 0.10000 Import values from PSF file Effective Short Range Blur FWHM [um] 0.01	Short Range Long Range Long Range Long Range Long Range Long Range Long Range	Archive Gaussian Approximation Numerical PSF PSF Parameter Alpha [um] 0.005000 Beta [um] 30.000000 Eta 0.600000 Gamma1 [um] 0.300000 Nue1 0.10000 Gamma1 [um] 0.300000 Nue1 0.10000 Import values from PSF file Effective Short Range Blur FWHM [um] 0.01 Include Short Range Correction Lateral Development Correction 	Short Range Mid Range Long Range Long Range Long Range 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.
Doubl	e Gaussian	Fou	ır Gaussian
			BEAMER Training Part 5 8

Short- & Mid-Range

- Control of Mid-Range Energy
 - Triggered by % energy in mid-range relative to LR (Advanced tab)
 - For efficiency, include in LR correction (recommended 4-5% midrange energy)
- Short Range Separation point
 - Controls the amount of energy in short range (automatic as default compromising speed & accuracy)

Additional "Gamma" Term

Some processes contribute an additional strong mid-range effect

- Effects in addition to electron scattering modelled in MC
- Resist and etching processes have additional "diffusion" type effects
- HSQ is a popular candidate for mid-range effect
- TRACER process calibration is considering that effect

Outline

- PSF definition
- Process parameters
 - Base dose / Effective blur
 - TRACER process calibration
 - Lateral development
- Advanced Parameters
- Summary
- Q & A

Effective Short Range Blur combines

- Beam blur (before entering resist)
- Forward scattering within the resist
- Resist development & etching process blur
- Calibrated by TRACER or estimation from dose test

Effective Short Range Blur

50keV, high current (~50nA), low contrast thick PMMA: ~ 50nm

Lateral Development

- Edge energies are equal:
 - Dose to clear at feature edge
 - Ideal for high contrast (thin) resists
- Thick resist application
 - Lower contrast resist development does
 - not stop at feature edge
 - Develops dependent on energy outside feature
 - Effect is stronger for high density substrates (GaAs, InP,..)
 - Results in density dependent bias

Lateral Development Correction

- Lateral Development Bias can be corrected at PEC
 - Density dependent Bias table
 - Experimentally measured
 - TRACER process calibration
- Correction:
 - Moving feature edge dependent on PSFdensity
 - Assigning dose factor
- PSF-Density:
 - Local layout density within PSF influence range

	Ø		
ity Effect Correction			
ral Accuracy Advanced Label/Comment Quick Access	Show Energy Deprity		
rrection Layer Selection	Show Energy Density Show Cumulative Radial Energy		
ver(s) *	Behaviour X-Axis: Logarithmic		
	Behaviour Y-Axis: O Logarithmic		
F Representation Archive Gaussian Approximation Numerical PSF			
y: ; Substrate: Si; Layers: ; Resists: PMMA 100 nm; Ener Archive Global Archive.	- 1		
View Comment. ective Short Range Blur FWHM [um] 0.010000			
Add Gamma [um] 1.000000 Nue 0.100000	ative [1 =		
Include Short Range Correction	Lateral Dev. Constitute Descent		\sim
	DCE doubtell	Dischard	
	FSF-density [-]	Bias jumj	
	0.000000	0.01	
	0.500000	0.02	
	1.000000	0.05	
	1000000		
OK Cancel Help			
OK Cancel Help	Insert Row	Delete Row	
OK Cancel Help	Insert Row Shift Step Size [um] 0.001000	Delete Row	

Process Calibration Procedure

Expose Dose Matrix, Process, & Measure Calibration Pattern

Use TRACER to fit the data and determine correction parameters

- Base Dose
- Effective Process Blur
- Constant and densitydependent bias
- UC/OC Mix Factor

Apply correction parameters using BEAMER's PEC module

Fit Results

The fitting procedure results in an "Extended Point Spread Function", adding terms to the scattering PSF

- Optimal Base Exposure Dose
- Effective Process Blur
- Constant Process Bias
- Density-dependent Bias terms to compensate
- Additional Midrange Gaussian

Documentation and Material

Calibration patterns are in BEAMER example folder

TRACER

GenISvs

Webinar Series:

Webinar Series Summary:

achieve feature sizes in nm-range. In practice this is limited by physics, chemistry and tool limitations such

- Application Note in download area
- Help: support@genisys-gmbh.com

Application Note

Full Process Calibration using TRACER: **Experimental Procedure**

An optimized e-beam lithography data preparation process must take into account process effects beyond just the electron energy distribution point spread function (PSF) as computed by TRACER. These process effects include density-dependent development rate changes, resist lateral development, and size bias due to process or metrology. It is possible to characterize and subsequently correct for these effects using a set of empirical measurements. This note describes the experimental procedure and data analysis necessary for such a Full Process Calibration.

Outline

- PSF definition
- Process parameters
- Advanced Parameters
 - Dose assignment
 - Fracturing
- Summary
- Q & A

- Proximity effect correction (PEC) is a proven method to improve e-beam lithography
- PEC controls the dose applied to a feature so that the feature is correctly sized and shaped
- Accurately adjusting dose usually requires fracturing a shape into many smaller shapes

Introduction

- What is the consequence of this shape fracturing?
- Accurate dose assignment, but...
- Shape count increase can impact:
 - Future data processing time
 - On-tool exposure time
- Net result can be a loss of throughput
 - Tool & pattern dependent
- How can we control shape count after PEC?

- Open a pattern in the VIEWER
- Select the "Tree" tab
- Expand the tree to the top cell
- Geometry Count is reported on the "Cell Information" tab. The "subtree" count is the total amount of shapes contained under the chosen level in the hierarchy

Checking Pattern Shape Count

- PEC dose class accuracy is selected on the Accuracy tab
- Smaller values represent a higher accuracy
- The dose range in the correction is discretized:

PEC – Accuracy tab Dose Class Definition O User Defined Accurac 1.00000 Aavimum Dose Facto Fracturing 0.010000 Isodose Grid (um) Minimum Figure Size Automatic O Userdefined [um] Long Range Short Range 0.10000 OK Help Cancel

Accuracy

Larger accuracy value reduces shape count at cost of internal dose variation

- The total shape count after PEC is shown for increasing accuracy values.
- Increasing the accuracy value...
 - **Decreases** the accuracy of the PEC dose assignment
 - Decreases the total shape count after PEC
 - Decreases the amount of dose classes
- Decreasing accuracy can have negative effects including:
 - Negative impact on shape fidelity
 - Variations in feature size

Choosing a PEC Accuracy

- We can estimate the effect of adjusting accuracy by examining Line Width vs. Dose data
- "Error" in dose assignment is approximately (Accuracy * Base Dose)
- Simulated 50 kV exposure of 200 nm line in center of 1:1 grating
 - \bullet Gives base dose of 350 $\mu\text{C}/\text{cm}^2$

Choosing a PEC Accuracy

- Slope = 4.6 nm/35 [μ C/cm²] change in line width
 - 35 $\mu C/cm^2$ corresponds to 10% of base dose
 - Meaning, accuracy of 10% allows ~4.6 nm deviation in line width at proper dose at 50% pattern density
- Note: Slope is dependent on pattern density – should be larger for denser features. Choose critical feature(s) at representative pattern density

• Alternative option by user defined dose table

- Manually type in values or import generated values
- All shapes will be assigned doses from the table

User Defined Dose Table

A	
ose Assignment	
Dose Class Definition	
⊖ <u>A</u> ccuracy	· · · · · · · · · · · · · · · · · · ·
Accuracy [%]	1.000000
Maximum Number of Dose Classes	256
Minimum Dose Factor	0.100000
Maximum Dose Factor	10.000000
Dose Table	•
0.7	
0.75	
0.8	
0.85	
0.9	
0.95	Import
1	
1.05	Insert Row
1.1	Delete Peur
1.15	Delete Row
1.2	
1.2	

Isodose Grid & Minimum Figure Size

coursey tab

DEC

- Isodose Grid defines the "fracture grid" that PEC utilizes
- Interacts with the minimum figure size (MFS)
- The value should equal a multiple of the Beam Step Size
- Automatic mode determines the MFS based on the PSF.

loce Accignment	Commune Quick Peccas	O Show Energy Density
Dose Assignment		Show Cumulative Radial Energy
Accuracy O User Defined		Benaviour X-Axis: @ Logarithmic Behaviour Y-Axis: O Logarithmic
Accuracy [%]	1.000000	
Maximum Number of Dose Classes	256	
Minimum Dose Factor	0.100000	
Maximum Dose Factor	10.000000	1
A		
		8 0.75 -
		athe
	Import	5 05 -
	Insert Row	0
	Delete Row	
		0.25 -
		0
		0.001
		Radial position jumj 16.53, Cumulative
Isodose Grid [um] 0.010000		Separation at 0.2183 um.
Isodose Grid [um] 0.010000		
Isodose Grid [um] 0.010000 Minimum Figure Size	-1/1 - Low Rever	Second Separation at 2.8776 um.

Isodose Grid

MFS = 100 nm Isodose grid = 200 nm

All fractured shapes at least 200 nm

Shapes are fractured in 200 nm increments

200 nm, 400 nm, 600 nm...

Scale of Grid overlay is 100 nm

MFS = 100 nm Isodose grid = 30 nm

All fractured shapes at least 120 nm

Shapes are fractured in 30 nm increments 120 nm, 150 nm, 180 nm, 210 nm...

Minimum Figure Size

- Minimum figure size is editable on the PEC accuracy tab
 - Default: automatically calculated based on the chosen PSF
- Defines the smallest allowable size of PEC fractured shapes
 - Shapes larger than the MFS will not be fractured
- Manually increasing this value can reduce the total shape count

Fine fractures

- SR PEC requires a small minimum figure size
 - Enables dose modulation at high resolution
- One MFS parameter would increase the shape count for LR pattern elements

Outline

- PSF definition
- Process parameters
- Advanced Parameters
- Summary
- Q & A

Summary

- PSF definition
 - Stack / Gauss / mid range part
- Process parameters
 - Base dose / effective blur / lateral development / TRACER process calibration
- Advanced Parameters
 - Shape count: Accuarcy / Min. Figure size / Iso dose grid

Method	Benefits	Drawbacks
Decrease PEC accuracy	• Data volume \downarrow	 CD variance ↑ Shape fidelity ↓
Increase PEC minimum figure size	• Data volume \downarrow	• Shape fidelity \downarrow
Layer Selective Long- range Fracturing	• Data volume ↓	 Additional pattern prep Not fractured shapes may lose fidelity

Thank You!

support@genisys-gmbh.com

Headquarters

USA Office

GenlSys Inc. P.O. Box 410956 San Francisco, CA 94141-0956 USA

D +1 (408) 353-3951
 ☑ usa@genisys-gmbh.com

Japan / Asia Pacific Office

GenlSys K.K. German Industry Park 1-18-2 Hakusan Midori-ku Yokohama 226-0006 JAPAN

- +81 (0)45-530-3306
- **+81 (0)45-532-6933**
- ⊠ apsales@genisys-gmbh.com